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a b s t r a c t

Effective discrimination between different waste materials is of paramount importance for inline quality
inspection of recycle concrete aggregates from demolished buildings. The moving targeted materials in
the concrete waste stream are wood, PVC, gypsum block, glass, brick, steel rebar, aggregate and cement
paste. For each material, up to three different types were considered, while thirty particles of each
material were selected. Proposed is a reliable classification methodology based on integration of the LIBS
spectral emissions in a fixed time window, starting from the deployment of the laser shot. PLS-DA (multi
class) and the hybrid combination PCA–Adaboost (binary class) were investigated as efficient classifiers.
In addition, mean centre and auto scaling approaches were compared for both classifiers. Using
72 training spectra and 18 test spectra per material, each averaged by ten shots, only PLS-DA achieved
full discrimination, and the mean centre approach made it slightly more robust. Continuing with PLS-DA,
the relation between data averaging and convergence to 0.3% average error was investigated using 9-fold
cross-validations. Single-shot PLS-DA presented the highest challenge and most desirable methodology,
which converged with 59 PC. The degree of success in practical testing will depend on the quality of the
training set and the implications of the possibly remaining false positives.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Laser induced breakdown spectroscopy (LIBS) is an optical
technique using a pulsed laser to produce a high power density
light beam to sample tiny amounts of material from the surface of
the target material. The sampled material is ablated to form a hot
ionised gas (the plume), which emits the observable spectra. The
spectra depend on the laser type and on a chain of physical
processes and parameters related to the target material, ablation,
plume dynamics and ambient conditions in which the plume is
produced [1–4]. This combination of complex transient processes
is the reason why the physics of LIBS is not yet fully understood
and the subject of continuing investigation.

The stand-off capability, relative simplicity in instrumentation,
ease of use and ability to detect a wide range of elements has made
LIBS a popular choice for inspecting materials such as polymers [5–
7], metal scrap [8], automobile catalyst [9], and wood [10]. LIBS has
also been investigated for building maintenance, such as on-site
assessment of chlorines in concrete [11] and fast chemical mapping
of concrete surfaces [12]. Quantitative LIBS was used for measuring
the elemental composition of recycle concrete particles [13].

The main challenge in the upgrading of recycle concrete to new
concrete is to safeguard quality. Demolition concrete will to some
degree be polluted with all kinds of building materials found in
domestic dwellings. The most common pollutants are wood, brick,
plastics, gypsum block, glass, and metals, which can all be detri-
mental for the quality of the new concrete. These waste particles
have a particle size range of 2–32 mm and are transported on
conveyor belts, typically at 30 cm/s. For the envisioned inline
application above the conveyor, it is preferable to operate the laser
in free air to reduce laser setup complexity and maintenance costs.

The free air poses a challenge to the detection of non-metals
such as C, S, Cl for several reasons. First, the targeted non-metals
have high excitation energies (410 eV) and generally show low
emissivity. Second, the dominant emission lines are in the deep-
UV and NIR ranges, e.g., C 247 nm, S 921 nm, Cl 837 nm, which
wavelengths are susceptible to absorption by oxygen (UV) and
water vapour (NIR). Third, the laser beam gives rise to localised air
breakdown [14], often initiated by tiny specks of dust. Conse-
quently, emissions from ionised air elements such as H, C, N and O
may interfere with those from the target material. Additionally,
the reactions between the ionised plume and the ambient air
appear to reduce the life time of the emission spectrum and the
obtainable signal levels [15]. More costly methods for improve-
ment on these three points would be to use an inert gas for
flushing the optical path, or sustaining the vacuum along most of
the optical path, or using more sensitive detectors such as ICCD.
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Yet another challenge is the large dynamic range in the
LIBS spectra. For example, alkali rich materials are overly
sensitive to LIBS and their emissions commonly dominate the
spectrum [16]. This may lead to poor signal-to-noise ratios for the
far less sensitive minor elements, which are often of main interest
for identification and quantitative analysis. Moreover, if saturation
occurs the blooming effect of the CCD may obscure adjacent
emission lines.

Due to the material-specific conditioning procedures, quan-
titative LIBS cannot reliably deliver the information required for
quality assessment of a moving stream of different waste
materials [17]. Instead, proposed is to develop a classification
methodology that employs all the physical information deliv-
ered by the LIBS experiment. To this end, the time-window of
integration starts at the moment of laser pulse deployment and
finishes after 10 μs. This fixed time-window produces spectra
that contain information about all stages of the LIBS experiment,
which is from the moment of ablation up to the condensation of
molecules in the ionised plume. The fixed time window avoids
the usual tuning of the start and duration of the time window of
integration for each material, which makes quantitative LIBS
material-sensitive. The approach neither requires any proces-
sing to eliminate continuous emissions, nor does it require the
material sensitive calibration procedures of the quantitative
LIBS methods. This combination of properties makes the pro-
posed LIBS methodology also less sensitive to the disturbing
emissions experienced when operating in free air.

The unknown spectra need to be classified for which
we selected the supervised methods partial least-square dis-
criminant analysis (PLS-DA) and principal component analysis
coupled with adaptive boosting algorithm (PCA–Adaboost). PCA
has to be complemented by another algorithm to obtain
the classification, for which binary adaptive boosting (Adaboost)
is chosen as the most suitable in a one-against-all approach.
Adaboost is once claimed to be the best off-the-shelf
binary classifier in the world [18], and has been employed for
near-infra red spectra [19], but has not been applied to LIBS
spectra before. We investigate and compare the capabilities of
the hybrid PCA–Adaboost method and PLS-DA, while also
comparing mean centre and auto scaling approaches for both
classifiers. Subsequently, we investigate the effects of a reduc-
tion in data averaging up to the single-shot scenario as the
ultimate real-time methodology for detecting moving waste
materials.

2. Methods and materials

2.1. Experimental setup and data processing

The laser in Fig. 1 is a 1064 nm diode pumped, Q-switched Nd:
YAG (Quantel Centurion), which delivers a 25.7 mJ pulse in 6.9 ns
with a maximum repetition rate of 100 Hz. It is noted that in
industrial operations a diode pumped laser is far preferable to a
flash lamp laser in view of the levels of maintenance and risk for
process continuity. The laser should be operated 60 h/week at
100 Hz, with the consequence that a diode pumped laser pack
typically needs replacement every 46 weeks (109 shots), while a
flash lamp would need replacement twice a week (107 shots). The
laser beam in Fig. 1 is folded by the reflecting mirror and focused
onto the sample surface by a plano-convex lens of 50 mm focal
length (f/4). This gives a power density of 21 GW/cm2 on a 150 μm
diameter spot, which is some hundred times higher than that
needed for breakdown of metals [20].

The emitted light propagating anti-parallel to the incident laser
beam is collected by the lens and folded by a long pass edge filter
(800 nm cut-off) that is transparent to the infrared laser light.
A second plano-convex lens is placed behind the filter to focus the
incoming light on the entrance of a bundle of seven optical silica
fibres. The receiving end of the fibres is coupled to a Czerny–
Turner spectrometer with bandwidth 250–800 nm, focal length
75 mm and 3648 pixels CCD. This results in a resolution of 0.32 nm
(FWHM). The simultaneous triggering of the laser unit and
spectrometer is performed by an external pulse generator. Light
collection starts at the moment the laser pulse is applied and ends
after 10 ms. A longer integration time did not noticeably contribute
to the quality of the spectra but it did increase the chance of
saturation. The raw spectra D(λ) are first averaged over N shots and
then normalised to the spectral integral, which strongly sup-
presses shot-to-shot variability to help develop the optimum
classification methodology
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Samples were moved at a constant speed of 30 cm/s to simulate
materials transport on a typical feed conveyor belt. At 100 Hz the
laser would sample every 3 mm of the waste stream. It is noted
that the quality of the LIBS spectra was stable for material
transport velocities up to 3 m/s.

2.2. Samples

For each material, thirty different particles were randomly
selected from streams of demolition concrete to represent the
material and material types (cf. Fig. 2): cement (CEM I 42.5 R HS,
CEM II/B-S 52.5 N, CEM III/B 32.5 N), brick (yellow, brown and red),
gypsum block (white, blue and red), wood (pine, ash and walnut),
PVC plastic (grey, black pipe and grey hard plate), glass (white,
green and brown), two of the most common types of aggregate
(sandstone and gabbro) and steel rebar, of which only one type is
used in the Netherlands. Each set of thirty particles were evenly
divided between the different types to form a total samples set of
two hundred forty particles.

Compressed air was used to clean the dust from the waste
particles, which is also quite feasible when the materials are in
transport on a conveyor belt. In fact, it may be preferable to the
alternatives, such as using a more powerful laser (requiring flash
lamps) or using two lasers where one fires first to clean the
surface. In the envisioned application, the moving feed layer of
2–32 mm concrete waste particles will be scraped off continuouslyFig. 1. The LIBS setup.

H. Xia, M.C.M. Bakker / Talanta 120 (2014) 239–247240



to provide a flattened material surface level for the laser to focus
on. This avoids the need for an autofocus unit. To simulate the
scraping effect, the tops of the nine waste particles were roughly
levelled on the rotating plate using double-sided tape. In our
setup, six particles were mounted at a time, rotated and sampled
until thirty acceptable (qualified) single-shot spectra per particle
were acquired. This process was repeated forty times for the total
of two hundred forty particles. Data qualification was applied,
where the non-qualified spectra were too much distorted by shot-
to-shot variations due to different lens-to-particle distances and
laser-material interaction conditions. To that end, upper and lower
limits for the maxima of a spectrum were set, corresponding to
98% and 42% of the dynamic range of the detector, to eliminate the
saturated and otherwise poor spectra. Fig. 3 shows how many
shots are required for each material to obtain the thirty qualified
spectra. For most materials between 30% and 45% of all shots are
qualified. This means that in practice in a single-shot scenario one
would need at least three–four shots per particle to obtain at least
one qualified shot. The non-qualified ones may mostly be attrib-
uted to misses (particle spacing), particle edges, surface roughness
and porosity, material heterogeneity and high transparency in case

of glass. The steel rebar was quite uniform in material, shape and
size, which contributed to the high percentage of qualified spectra.

The type of cement in concrete demolition waste is of minor
interest in the present work, because the focus is on detecting the
waste pollutants. It should also be pointed out that cement stone
from demolished concrete is in fact a mixture of sand and cement,
where the sand has a similar geological origin as the concrete
aggregate. Of the waste metals only steel rebar is selected, because
other building metals (e.g., aluminium) proved just as easy to
discriminate from other waste types as steel. From the large
variety of rock types used for concrete aggregate, sandstone and
gabbro are arguably the most widely used sources. To emphasise
the cement properties instead of the concrete sand, three types of
pure cement paste were prepared by mixing cement powder and
distilled water to a water/cement ratio of 0.5. It was left to cure for
several days to its full strength and was then broken up into
particles.

3. Results

3.1. LIBS spectra

LIBS photonic emissions are primarily produced by the ionised
plume, though some emissions may be expected from air mole-
cules interacting with the plume and from the hot ablated sample
surface. The plume is the result of a sequence of complex physical
processes, active during overlapping stages from initiation to
extinction of the LIBS experiment [21]. In particular, the optical
absorption of laser light, dielectric breakdown, heating, melting,
ablation and shock wave formation, the stages of plume expansion
and plume reheating by absorption of part of the laser energy [22].
As a result, the produced emissions may be linked to quite
different physical processes. To simplify matters we distinguish
three types of detectable emissions: continuous radiation, ionic–
atomic emissions and emission bands.

Continuous radiation spans a wide range of wavelengths,
linked to as many available energy transitions from ionised species
and electrons, e.g., free–free and free-bound transitions [23]. These

Fig. 2. Eight waste materials and selected types from a stream of demolition concrete.

Fig. 3. The qualified spectra as a percentage of the total number of deployed laser
shots. The bar shows the mean for the thirty particles per waste material, and the
brackets show the standard deviation.
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transitions can occur as long as the plume is optically dense and
ionised. However, the observed radiation spectra may be quite
different for different types of material. This implies that the
possible energy transitions and/or most probable emissions depend
on the species and degree of ionisation of the plume, which in turn
are determined by the target material and the effectiveness of the
ablation process.

The emission bands arise both in the hottest stage, e.g., Stark
broadening and fluorescence shifts, as well as after some cooling
down of the plume when molecules can start forming. The
emission bands are also expected to be highly dependent on the
composition of the original target material, how much material is
effectively ablated and how hot the plume becomes, and how this
particular mix of ionised species eventually condenses.

Complex as the processes may be, the continuous radiation and
emission or absorption bands may quite well be carrying discri-
minating information on the target material composition and,
quite likely, the specific way in which it influenced the ablation
process. This means these spectral contributions may be utilised
for materials discrimination, even though it is (as yet) not
physically tractable and is therefore probably of little use for
quantitative measurements. The ionic–atomic emissions are
physically tractable and may, if conditions and calibrations permit
it, be used to quantify the elemental concentrations in the target
material.

In view of the diversity of potential physical information, it was
the logical decision to collect all the types of spectral emission
delivered by the LIBS experiment and let the classification algo-
rithms extract the discriminating information. This way, we also
avoid the material sensitive calibration procedures and tuning of
the time integration window.

Fig. 4 shows the representative spectra for the waste materials
and indicates a few characteristic emission lines and bands. The
discriminating emission lines in PVC are Cl (594 nm), CaCl bands
(618 nm), CN bands (387 nm) and Ca (422 nm). It indicates the
presence of CaCO3, which is a common type of filler in thermo-
plastics. Since wood is principally made up of cellulose and lignin,
the CN, H, O emission lines were already expected to be quite
apparent. Due to the porosity of wood, the laser energy was more
prone to be absorbed by air pockets and the spectrum therefore
shows strong N emissions. The spectrum of glass shows the expected
elements Ca and Si, but it also indicates the presence of Ba as an
inherently toxic element. The rebar shows multiple, well resolved
Fe-related emission lines. The gypsum block shows only very weak

evidence of S in the 550–556 nm range, while the elemental S
content in the gypsum block is estimated as 15 wt%.

The brick and cement show a similar composition as gypsum
block in the elements Ca, Si, Al, Fe, Mg and Na. The reason is the
presence of clay, also the main component of brick, which is fed
together with lime into the cement kiln to produce the clinker. It is
noted that gypsum is also an additive in cement and improves the
setting properties of the fresh mortar. The CaO and CaOH bands
were easiest to observe in cement due to its higher Ca content. The
continuum contribution to the spectrum appears relatively stronger
for the mechanically harder and optically opaque types of material.
In this work those are steel rebar, concrete aggregates and cement,
where it is reminded that the presented spectra are normalised
according to Eq. (1). It may be inferred from these comparisons that
the LIBS spectra are also sensitive to the optical and mechanical
properties of the target materials by virtue of the underlying laser
absorption and ablation processes. Judging from the fact that
sometimes the most characterising element emissions are weak
or even absent for some waste materials, e.g., sulphur in gypsum
block, the complete time history provided by LIBS should be utilised
to improve the reliability of the classification methodology.

3.2. PLS-DA

PLS-DA requires a training session before it can be applied to
unknown data, which (supposedly) fall within the variance of the
training data. In training, X denotes the predictor matrix with
known spectra of the eight different waste materials. The raw
spectra were averaged over ten shots and normalised according to
Eq. (1). Then, mean centre and auto scaling approaches were
applied and compared. In mean centre the column mean is set to
zero for both X and Y matrices and the spectral variation is used
instead of absolute values. In auto scaling the column mean is also
set to zero, but in addition the column standard deviations are set
to unity. Therefore, auto scaling gives the same weight to all
wavelengths. This enhances the role of small emission peaks, but
noise may also become more pronounced.

With 72 spectra (10 averaged) per material, a 576�3648
predictor matrix is obtained. Corresponding to X, the response
variable Y is a 576�8 label matrix which classifies the materials
either as a one (target material, one against all) or as a zero (other
material). PLS regression will solve for the prescribed number of
principal components (PC) by utilising the correlation between
X and Y, after which the PC that contribute most to the correlation
in the system of equations are selected to span a reduced space to
represent the correlated multivariable data. In this work we used
the “plsregress” function from Matlab 2012b, which is based on
the SIMPLS algorithm [24]. The training session yields an output
correlation coefficient matrix between X and Y, which during
operation should be multiplied with an unknown test spectrum
to determine the class. The unknown spectrum is assigned to the
class for which the calculated Y value is closest to unity.

The number of PC is a primary parameter in PLS-DA. Selecting
too few could result in under-fitting, while too many could result
in significant over-fitting in the calibration model. Whereas over-
fitting may improve the training, the prediction performance
during testing may be poor. Usually, the number of PC is chosen
by examining the percentage of variance explained by the model
and the relative mean squared error of cross-validation (RMSECV).

With the 9-fold cross-validation the training dataset was
partitioned into nine mutually exclusive and equal subsets. Each
subset was used as a test set, while a PLS model was trained using
the other subsets. The nine results were averaged to produce
a single PLS calibration model. This internal validation method
makes it possible that each sample may be seen as a testingFig. 4. Normalised LIBS spectra for eight building waste materials.
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instance for which the prediction error (RMSECV) can be calcu-
lated. Therefore, the resultant model using cross-validation could
be more representative for the statistical spreading of the data
than, for example, goodness of fit that depends significantly on the
choice of training dataset.

Traditionally, the number of PC is determined by the point
where the RMSECV is minimal. In this case, the RMSECV estimate
for a 9-fold cross-validation reaches a local minimum for both
mean centre (1.5% of RMSECV and 99.8% variance in Y) and auto
scaling (2.0% of RMSECV and 99.6% variance in Y) with the first 59
PC. Mean centre performs slightly better as it shows a higher
variance in Y and a lower RMSECV. However, both methods
(cf. Fig. 5) converge very slowly after 17 PC and the RMSECV is
less than 5% using mean centre. We choose mean centre for PLS in
the remainder of this work.

Cross-validation is mostly applied in quantitative calibrations,
because the error can be accurately calculated as a continuous
value. However, cross-validation can overestimate the number of PC
required for classification since the classification rules may exagge-
rate the error. Table 1 shows the misclassification rate for increasing
PC during training, based on 72 spectra of each material. This
approach is also known as “goodness of fit”. In contrast to the 59 PC
determined using 9-fold cross-validation, only 15 PC are shown to
provide full classification during training, corresponding to a
RMSECV of 5.5%. PVC proves to be the most challenging.

It is desirable to find a reliable relation between the number of
PC as determined by 9-fold cross-validation and goodness of fit.
To this end, 18 testing spectra per material are used in two PLS
models, which results are compared in Fig. 6. Six glass test spectra
were misclassified as brick (4), aggregate (1) and gypsum (1),

using a parsimonious PLS model with 15 PC. Apparently, this error
is the result of under-fitting. In this case, addition of PC may help
cover a possibly wider spread during testing. With 59 PC, all 18
spectra for each material are fully classified and hence, not over-
fitted.

Fig. 6 shows that full classification is achieved for the first time
with 30 PC, corresponding to 2.2% of RMSECV. However, with
increasing PC, the curve fluctuates until it remains zero at 49 PC
(1.5% of RMSCV). This level of correspondence between cross-
validation and goodness of fit might vary according to the partition
of training and testing datasets. In this sense, cross-validation
appears more reliable, even though it introduces here some
10 redundant PC.

To gain same insights into the influence of partition of datasets
on PLS performance, 2, 4, 6, 9-fold cross-validation (corresponding
to 1, 3, 5 and 8 training to testing datasets ratios) were employed
to evaluate RMSECV for increasing PC in Fig. 7. The main

Fig. 5. Variance explained in the response variable as a function of the number of PLS PC (left) and the RMSECV for 9-fold cross-validation (right) using mean centre and auto
scaling.

Table 1
Misclassification rates of PLS-DA (with mean centre) during training for increasing
number of PC. For each material 72 training spectra were used.

#PC Cement Aggregate Rebar Brick Gypsum Wood PVC Glass

1 0.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0
2 0.0 100.0 0.0 100.0 95.8 1.4 100.0 0.0
3 0.0 100.0 0.0 16.7 27.8 0.0 100.0 0.0
4 6.9 58.3 0.0 0.0 0.0 0.0 100.0 0.0
5 9.7 97.2 0.0 0.0 0.0 0.0 16.7 0.0
6 9.7 15.3 0.0 11.1 0.0 0.0 16.7 0.0
7 6.9 12.5 0.0 11.1 0.0 0.0 16.7 0.0
8 5.6 5.6 2.8 0.0 0.0 0.0 16.7 0.0
9 5.6 1.4 0.0 0.0 0.0 0.0 16.7 0.0

10 0.0 1.4 0.0 0.0 0.0 0.0 16.7 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 6. Misclassification rate (ratio of misclassified to total number of test spectra).

Fig. 7. RMSECV with increasing number of PLS PC applying different folds of cross-
validation in semi-logarithm.
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differences were observed for higher numbers of PC. With rela-
tively large training sets the RMSE values are lower, indicating
a better classification at the cost of using more PC. It appears
a compromise should be made between the number of training
samples and the misclassification rate. It is noted that the RMSECV
cannot be lower than 2% if the training set is smaller than the
testing set. Practically, the PLS algorithm did not converge for all
numbers of PC. Fig. 7 shows that up to 20 PC the convergence rate
does not depend on the relative size of the training set. For more
than 30 PC, the convergence rate reduces to a crawl, indicating
increasing uncertainty in how many PC will be required for full
discrimination.

3.3. PCA–Adaboost

Principal component analysis (PCA), like PLS, aims to find a
reduced space to represent the correlated multivariable raw
spectra. The method is different from PLS in that it aims to
maximise the contribution to the variance of first few PCs in the
X matrix and is a non-supervised method by which it does not
perform classification. For the latter purpose the PC are fed to an
adaptive boosting algorithm [25]. PCA–Adaboost requires a train-
ing session before it can be applied to unknown spectra. The
X and Y input data were pre-processed similar as for PLS-DA and
fed to the PCA algorithm “princomp” of Matlab 2012b. For training,
PCA created a 3648�K loading matrix and a 576�K score matrix.
The score matrix and a 567 label vector (1 for target material and
�1 for the rest) were fed to the Adaboost algorithm using the
STPRTool [26] to build the classification model. A binary weak
classifier on each PC score was used to determine the misclassi-
fication error. Adaboost first picks up the weak classifier/PC score
with minimum misclassification error (450% predictability), then
gives more weight to the misclassified data, and finds the second
weak classifier/PC score, possibly the previous one. This process is
repeated until all the weak classifiers combine to a strong
classifier. The only tuneable parameter is the number of iterations.
We explored the hybrid PCA–Adaboost model by investigating the
weighted error (error for single weak classifier) and error bound
(error for the combined classifier). The weighted error evaluates
the total performance of the model and the error bound stops the
iteration. The classification rule during testing is the same as for
PLS-DA. Details on Adaboost and binary weak classifiers may be
found in literature [19,25].

Fig. 8 shows PCA clusters for the eight waste materials using
the first two PC scores with mean centre (Fig. 8a) and auto scaling
(Fig. 8b), accounting for 83% and 69% of the total variance,
respectively. They reveal nicely distinct clusters, regardless of the
scales of the PC scores and the direction of the PC1 axis. Glass
overlaps with aggregate, while wood, PVC and rebar are already

well isolated. Cement was better isolated from brick using auto
scaling.

The PCA scree plot Fig. 9 shows that the first five PC account for
more than 95% of the cumulative variance in X. Mean centre
converges faster than auto scaling, since in auto scaling the noise
plays a relatively more pronounced role.

Adaboost is employed to determine classes from the PCA-PC
scores. A few other linear classifiers, reported to be little suscep-
tible to over-fitting, were also tested. The unsupervised types
proved less effective, such as K-mean clustering (multi class) and
Fischer linear discriminant (binary class). Of the supervised
classifiers, Perceptron (multiclass) may perform well for suffi-
ciently resolved classes but it could not find a satisfactory
boundary in case of overlapping clusters, similar to the case for
cement and brick in Fig. 8a.

Fig. 8. Clusters produced by PCA using the first two PC scores. Indicated in the axis label is the PC contribution to the total variance. (a) With mean centre. (b) With auto
scaling.

Fig. 9. PCA scree plot of the percentage of the variance contributed by each PC.

Fig. 10. Error bound and weighted error during Adaboost training iterations with
mean centre (black) and auto scaling (red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Since Adaboost is little susceptible to over-fitting, the first 100 PC
scores from the PCA algorithm were used as input features, which
proved to include all the relevant PC scores as determined by
Adaboost. The one-against-all approach was applied, meaning that
each single target material class is determined against the second
class, which is the mix containing the other seven waste materials.
Fig. 10 shows the error bound and weighted error as a function of
the number of weak classifiers/iterations using both mean centre
and auto scaling. It proves the error bound decreases sharply up to
the first ten iterations, after which it declines quite slowly. At the
point of loss of convergence the weighted error begins to fluctuate,
which indicates that the following weak classifiers perform poorly
and one should stop the iteration. The first few weak classifiers are
the most distinctive for classification. Mean centre again outper-
forms auto scaling in terms of lower error bounds and weighted
errors.

Table 2 lists the number of misclassifications using a training
set of 72 spectra and a test set of 18 spectra per material. The
relevant PC numbers for each target material were determined by
Adaboost. It shows that at most 7 out of 100 PC scores actually
contribute to the classification. Using mean centre, the rebar,
gypsum, wood, PVC and glass were fully classified. Five spectra
were not classified correctly, meaning the target material was
misclassified as the mix. Using auto scaling the cement, rebar,
gypsum and wood were fully classified. In total, twenty five
spectra were not classified correctly. The mean centre approach
outperformed auto scaling in terms of total misclassifications and
is preferred for PCA–Adaboost.

Fig. 11 shows the typical erratic class boundaries produced by
Adaboost, in this case for cement against the mix of other
materials. For scores PC1 and PC2 the boundary ‘surgically’ isolates
the cement, which explains the success of boosting in producing
class boundaries. The inset of Fig. 11 details the class boundary in
the space spanned by scores PC1 and PC5, where PC5 contributes
less than 5% in the variance coverage. This inset shows that the
level of PCA variance coverage has no real bearing on the
performance of Adaboost.

Based on the results in Table 2, a PCA loading plot with the
most distinctive PC loading vectors is shown in Fig. 12. The parts
corresponding to the emission lines and bands mainly responsible
for classification of the target material are marked. Rebar was best
classified by PC2 in relation to Fe emissions in the UV range, while
aggregates were most distinguishable with PC7 due to the Mg, Al
and Li emission lines. Brick was most distinguishable with PC4 due
to strong Si and Ti emission lines and emission bands.

3.4. Single-shot LIBS

The PLS-DA algorithm is preferred when dealing with LIBS
spectra from building waste materials. In view of the envisioned
application of the proposed methodology, the characterisation on
the basis of single-shot spectra is highly preferred [27]. First,
because averaging lowers the effective sampling and pulsed lasers

with high repetition rates are quite costly. Second, because
according to Fig. 3 some two out of three shots may not contribute
to qualified spectra. Since the training set should be representative
for the variance in the unknown spectra, the PLS-DA model should
also be built using single-shot spectra. To stay in tune with the
results in Table 1, we applied 720 single-shot spectra per material
for the training set and 180 for the test set.

To gain some insight into the relation between the occurring
spread in the raw data sets for the different materials and the
robustness of PLS-DA, it is instructive to calculate the relation
between the average misclassification rate, data averaging and
number of PC required to achieve optimal convergence during
9-fold cross-validation for the training process. Fig. 13a shows the
average misclassification rate in RMSECV as a function of PC for

Table 2
PCA-PC used in Adaboost (one-against-all) during training of 72 spectra and number of misclassifications during testing of 18 spectra. Top
two rows relate to mean centre (MC) and two bottom rows to auto scaling (AS). The most distinguishing PC number for the material is in
bold face.

Cement Aggregate Rebar Brick Gypsum Wood PVC Glass

MC 1,2,3,5,10 1,3,7,8,10 2 1,3,4 3,4,5,8 1 1,2,3,4,6,7,8 2,3,6,10
Misses 1 3 0 1 0 0 0 0
AS 1,2,6,7 3,4,7,8 2 1,4,5,7 4 1,9 1,2,3,6,9 1,3,8
Misses 0 6 0 1 0 0 1 17
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Fig. 11. Adaboost binary class boundaries for cement against the mix of seven other
materials for training. The erratic boundary is for PC scores with high variance
coverage and the inset shows a boundary with much smaller variance coverage.

Fig. 12. PCA loading plot linking the dominant loading vectors to the physical
spectra.
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single-shot, 2, 4, and 10 times averaging of all the spectral data,
while maintaining the same size ratio of 4:1 for the size of the
training set and test set. Apparently, data averaging slightly
increases the rate of convergence, but for single-shot and aver-
aging by 2 the rate slows down to a crawl after 20 PC. The local
minima of RMSECV for the number of averaging spectra are 5.2%
(single shot, 81 PC), 3.0% (2 averaged, 80 PC), 2.0% (4 averaged,
74 PC) and 1.5% (10 averaged, 59 PC).

Fig. 13b shows the number of PC required to get below
5.2% average misclassification rate as a function of the number of
averaged spectra. The fitted smooth curve is 1/N3/2, which clearly
shows the rapid convergence for increasing data averaging.

For testing, the numbers of PC determined by the local minima
of RMSECV during 9-fold cross-validation were used while varying
the number of averaged data. Table 3 lists the classifications using
PLS-DA. As a percentage of the tested data set, the misclassifica-
tions made up 0.28% (single-shot), 0.14% (2 averaged), 0.56%
(4 averaged) and 0% (10 averaged).

Since perfect discrimination is achieved only for the last
scenario (10 averaged), though it will keep on improving for
increasing numbers of PC, it is important to distinguish between
two types of misclassifications. The first is where a target material
is not classified as such (false negative), and the second is the
consequence, i.e., where one type of material is misclassified as
another (false positive). The consequences may be most significant
in case of the identification of minority particles in a waste stream
if the majority particles create many false positives. For example,
if aggregate or cement particles (majority of the stream) would be
mistaken for pollutants (minorities).

For 4 averaged data, one glass particle was misclassified as
cement and another as PVC. For 2 averaged data, one aggregate
was misclassified as glass. For single-shot data, three aggregates
were misclassified as cement, wood and glass, respectively, and
one brick particle was misclassified as cement. Therefore, for
single-shot LIBS in a future inline application, it is paramount to
tailor the size and quality of the training set and the number of
PC in order to minimise the chance of the significant false
positives during testing.

4. Conclusions

Proposed is a reliable classification methodology based on the
integration of the LIBS spectral emissions over a fixed time window,
starting from the deployment of the laser shot. The spectra include
emissions associated with all physical stages of the laser induced
breakdown experiment that may all contribute discriminating
information on the targeted materials. In order not to lose any of
this information, no spectral background subtraction or other type
of spectral filtering was applied to the raw data. This approach
extends the physical information available to classification com-
pared to conventional quantitative LIBS, which attempts to mini-
mise spectral contributions other than the ionic–atomic emissions.
Moreover, the proposed methodology does not require the
material-sensitive calibration procedures or optimizations of the
time window of integration. The target materials were selected
from concrete demolition waste and sampled by the laser in free air.
Care was taken to mimic as close as possible the operational
conditions that are found above a feed conveyor belt in recycling
practice. PLS-DA and the hybrid PCA–Adaboost method (one-
against-all) were investigated for their ability to classify the spectra.
Ten times averaged spectra were used first, for which case PLS-DA
combined with the mean centre approach gave the most robust
results. Continuing with PLS-DA, the relation between data aver-
aging for an optimum number of PC, as required for convergence,
was investigated up to the single-shot scenario. The achieved
misclassification rates of the tested data were: 0.28% (single-shot),
0.14% (2 averaged), 0.56% (4 averaged) and 0% (10 averaged). Single-
shot LIBS constitutes the most promising real-time methodology,
which success depends on the quality of the training set and the
implications of the possibly remaining false positives for quality
inspection of the demolition concrete waste stream.
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